Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Diacetonitrile-1 $\kappa N, 3 \kappa N$-bis $\{\mu$-trans-N-[3-(dimethylamino)propyl]-N^{\prime}-(2-hydroxyethyl)oxamidato(2-)\}$1: 2 \kappa^{5} N, N^{\prime}, O: O^{\prime}, N^{\prime \prime} ; 2: 3 \kappa^{5} O^{\prime}, N^{\prime \prime}:-$ N, N^{\prime}, O-dithiocyanato- $1 \kappa N, 3 \kappa N-$ tricopper(II)

Jin-Liang Liu, ${ }^{\text {a }}$ Cui-Wei Yan, ${ }^{\text {b }}$ Yan-Tuan Li, ${ }^{\text {a* }}$ Zhi-Yong Wu^{c} and Wan-Ju Zhang ${ }^{\mathrm{a}}$

[^0]Received 22 December 2007
Accepted 30 January 2008
Online 8 March 2008
The title compound, $\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}\right)_{2}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]$, contains two square-pyramidal $\mathrm{Cu}^{\text {II }}$ units chelated by a transoid asymmetrical N-[3-(dimethylamino)propyl]- N^{\prime}-(2-hydroxyethyl)oxamidate (dmapheoxd) dianion $\left\{\mathrm{H}_{2}\right.$ dmapheoxd is N-[3-(dimethylamino)propyl]- N^{\prime}-(2-hydroxyethyl)oxamide\}, which coordinates to another $\mathrm{Cu}^{\mathrm{II}}$ ion in a square-planar environment lying on a crystallographic inversion center. Thus, the trans-oxamide ligand bridges two $\mathrm{Cu}^{\mathrm{II}}$ ions with different coordination numbers, and this is the first instance of such a zero-dimensional oxamide-bridged complex. The activated methyl group in the coordinated acetonitrile molecule is involved in a strong nonclassical $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, which contributes to a one-dimensional chain extending in the b direction. Considering the presence of weak bonding between the Cu atom and the uncoordinated hydroxyl O atoms, a two-dimensional structure is formed parallel to the $a b$ plane.

Comment

Symmetrical N, N^{\prime}-disubstituted oxamides have been fully studied and are known to be versatile organic ligands which can both chelate and bridge metal ions to construct discrete and extended structures (Bencini et al., 1986; Dominguez-Vera et al., 1996; Real et al., 1994; Sanz et al., 1996). Compared with the large number of complexes bridged by symmetrical N, N^{\prime} disubstituted oxamides, only 11 complexes bridged by asymmetrical N, N^{\prime}-disubstituted oxamides have been characterized to date by single-crystal X-ray diffraction (Table 3)
[Cambridge Structural Database (CSD), Version 5.28; Allen, 2002]. In these complexes, all the asymmetrical ligands contain aromatic terminal groups, while no asymmetrical N, N^{\prime}-bis(aminoalkyl)oxamide has been found. Taking the above facts into account, we synthesized a novel asymmetrical ligand, viz. N-[3-(dimethylamino)propyl]- N^{\prime}-(2-hydroxyethyl)oxamide $\left(\mathrm{H}_{2} \mathrm{dmapheoxd}\right)$, and its tricopper complex, $\left[\mathrm{Cu}_{3}\right.$ (dmapheoxd $\left.)_{2}(\mathrm{NCS})_{2}(\mathrm{MeCN})_{2}\right]$, (I), and report the crystal structure of the complex here.

(I)

The molecular structure of complex (I) is illustrated in Fig. 1. Selected bond lengths and angles are listed in Table 1. Compound (I), a trinuclear $\mathrm{Cu}^{\mathrm{II}}$ complex, is formed by two trans-oxamidate-chelated $[\mathrm{Cu}(\text { dmapheoxd })(\mathrm{NCS})(\mathrm{MeCN})]^{-}$ anionic units as ligands coordinating another $\mathrm{Cu}^{\mathrm{II}}$ ion (Cu1) lying on a crystallographic inversion center. The central $\mathrm{Cu}^{\mathrm{II}}$ atom (Cu1) is in a square-planar environment. However, considering the longer inversion-related $\mathrm{Cu} 1 \cdots \mathrm{O} 1$ interactions of 2.896 (7) \AA to atoms O 1 at $(x+1, y, z)$ and $(-x-1$, $-y,-z), \mathrm{Cu} 1$ is in a classical [4+2] octahedral environment, and a one-dimensional chain extending in the a direction is formed. In the complex ligand, the outer $\mathrm{Cu}^{\mathrm{II}}$ ion (Cu2) has a slightly distorted $\left[\mathrm{CuN}_{4} \mathrm{O}\right]$ square-pyramidal coordination geometry. The basal plane is defined by atom N 4 of the SCN^{-} ligand and by three atoms ($\mathrm{O} 2, \mathrm{~N} 2$ and N 3) from the dmapheoxd ligand, with a maximum deviation of 0.013 (3) \AA for atom O 2 from the least-squares plane. The apical position

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds and weak $\mathrm{Cu}-\mathrm{O}$ bonds are shown as dotted and double-dotted lines, respectively. Disordered atoms $\mathrm{C} 6 B-\mathrm{C} 9 B$ and $\mathrm{C} 6 B^{\mathrm{iii}}-\mathrm{C} 9 B^{\mathrm{iii}}$ have been omitted for clarity. [Symmetry codes: (i) $x+1$, y, z; (ii) $-x-1,-y,-z$; (iii) $-x,-y,-z$; (v) $x-1, y, z$; (vi) $-x+1,-y$, $-z$.]

Figure 2
The positional disorder of the dimethylaminopropyl group in the dmapheoxd ligand. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Figure 3
The one-dimensional chain extending in the b direction. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (iii) $-x,-y,-z$; (iv) $-x,-y+1,-z$.]
is occupied by atom N 5 of a coordinated acetonitrile molecule. In the basal plane, the $\mathrm{Cu} 2-\mathrm{N} 2$ (amide) bond $[1.972$ (6) \AA] is shorter than the $\mathrm{Cu} 2-\mathrm{N} 3$ (amine) bond [2.052 (9) \AA], which is consistent with the stronger donor ability of the deprotonated amide N atom compared with the amine N atom (Jubert et al., 2002). The axial $\mathrm{Cu}-\mathrm{N}$ bond length $[\mathrm{Cu} 2-\mathrm{N} 5=2.390$ (9) \AA A $]$ is significantly longer than those in the basal plane, from which atom Cu 2 is displaced by 0.177 (3) \AA towards the apex. The $\mathrm{Cu} 1 \cdots \mathrm{Cu} 2$ distance is 5.248 (3) \AA.

Although several examples have been observed of cisoxamide bridging ligands chelating two metal ions with different coordination numbers (Cronin et al., 1999; Sun et al., 2007; Tao, Zang, Cheng et al., 2003), for transoid ligands the metal ions usually have equal ligancy, such as both five or both four (denoted $[5+5]$ and $[4+4]$, respectively). Among the reported crystal structures of trans-oxamide bridging
complexes, only two two-dimensional complexes have the coordination modes [4+5] (Chen et al., 1998) and [5+6] (Chen et al., 1994). The title compound also has the coordination mode [4+5], and it is the first instance of a zero-dimensional complex with different ligancies. The hydroxyl group in the dmapheoxd ligand acts as a donor of the intramolecular hydrogen bond $\left[\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 3^{\mathrm{iiii}}\right.$; symmetry code: (iii) $-x,-y$, $-z$; Table 2] and a seven-membered hydrogen-bonding circuit is formed (Fig. 1), folding at $\mathrm{C} 2 \cdots \mathrm{O} 3^{\text {iii }}$ with a dihedral angle of $59.2(3)^{\circ}$.

The distances $\mathrm{C} 3-\mathrm{N} 1 \quad[1.307(9) \AA]$ and $\mathrm{C} 4-\mathrm{N} 2$ [1.275 (9) \AA] have typical $\mathrm{C}=\mathrm{N}$ values. Whereas the bond lengths of $\mathrm{C} 3-\mathrm{O} 2[1.262$ (9) \AA] and $\mathrm{C} 4-\mathrm{O} 3[1.291$ (8) \AA A are in accordance with those of $(\mathrm{O}=) \mathrm{C}-\mathrm{O}^{-}$fragments in many complexes (Berg et al., 2002; Delgado et al., 2006; Nash \& Schaefer, 1969), the oxamide fragment is best described as $\mathrm{N}=\mathrm{C}-\mathrm{O}^{-}$rather than delocalized.

The dimethylaminopropyl group in the dmapheoxd ligand is disordered over two positions ($\mathrm{C} 6 A-\mathrm{C} 9 A$ and $\mathrm{C} 6 B-\mathrm{C} 9 B$), with occupancy factors of 0.55 and 0.45 , respectively (Fig. 2). The puckering parameters (Cremer \& Pople, 1975) of the corresponding six-membered chelating rings around Cu 2 are $Q=0.575$ (19) $\AA, \theta=142.7(14)^{\circ}$ and $\varphi=26(2)^{\circ}$, and $Q=$ 0.698 (15) A, $\theta=68.5(10)^{\circ}$ and $\varphi=196.5(11)^{\circ}$, respectively.

In the crystal structure, only one classical hydrogen bond is observed, as noted above (Table 2). Nevertheless, due to the activation of the methyl group by the cyano group of the acetonitrile ligand, the methyl group interacts with the O atom of the hydroxyl group of a neighboring molecule, forming a nonclassical $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Fig. 3), via which a one-dimensional chain extending in the b direction is formed. On the other hand, considering the presence of weak bonding between atom Cu 1 and the uncoordinated hydroxyl O atoms, a two-dimensional structure is formed parallel to the $a b$ plane.

Experimental

All reagents were of AR grade and were used without further purification. For the synthesis of the H_{2} dmapheoxd ligand, an ethanol solution $(10 \mathrm{ml})$ of 3 -dimethylamino-1-propylamine $(1.26 \mathrm{ml}$, 10 mmol) was added very slowly, via a dropping funnel, to an ethanol solution (10 ml) of diethyl oxalate ($1.36 \mathrm{ml}, 10 \mathrm{mmol}$) with continuous stirring. The mixture was stirred quickly for 30 min , and then an ethanol solution (10 ml) containing enthanolamine (0.60 ml) was added dropwise. The reaction solution was stirred at room temperature for 3 h . The resulting solution was concentrated under vacuum and H_{2} dmapheoxd precipitated as a white powder (yield 78%).

For the preparation of the title compound, (I), piperidine $(0.2 \mathrm{mmol})$ and a solution of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.0256 \mathrm{~g}, 0.15 \mathrm{mmol})$ in acetonitrile (5 ml) were added successively to a solution of H_{2} dmapheoxd $(0.0217 \mathrm{~g}, 0.1 \mathrm{mmol})$ in acetonitrile (5 ml). The mixture was stirred quickly for 30 min and then an acetonitrile solution (5 ml) containing $\mathrm{KSCN}(0.0098 \mathrm{~g}, 0.1 \mathrm{mmol})$ was added dropwise. The reaction solution was stirred continuously at 333 K for a further 5 h . Green crystals of the title complex suitable for X-ray analysis were obtained from the solution after slow evaporation at room temperature for 7 d (yield 70%). Elemental analysis calculated
for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{Cu}_{3} \mathrm{~N}_{10} \mathrm{O}_{6} \mathrm{~S}_{2}$: C 35.18, H 4.92, N 17.09\%; found: C 35.28, H 4.99, N 17.04\%.

Crystal data

$\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{4} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}\right)_{2}(\mathrm{NCS})_{2^{-}}\right.$	$\beta=97.831(10)^{\circ}$
$\left.\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\right]$	$\gamma=96.185(10)^{\circ}$
$M_{r}=819.45$	$V=847.1(11) \AA^{3}$
Triclinic, $P \overline{1}$	$Z=1$
$a=6.040(5) \AA$	Mo $K \alpha$ radiation
$b=8.262(6) \AA$	$\mu=2.04 \mathrm{~mm}^{-1}$
$c=17.256(13) \AA$	$T=298(2) \mathrm{K}$
$\alpha=91.999(10)^{\circ}$	$0.19 \times 0.12 \times 0.08 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.698, T_{\text {max }}=0.854$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 1$	$1.954(6)$	$\mathrm{Cu} 2-\mathrm{N} 4$	$1.948(7)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$1.964(5)$	$\mathrm{Cu} 2-\mathrm{N} 5$	$2.390(9)$
$\mathrm{Cu} 2-\mathrm{N} 2$	$1.972(6)$	$\mathrm{Cu} 2-\mathrm{O} 2$	$2.015(6)$
$\mathrm{Cu} 2-\mathrm{N} 3$	$2.052(7)$	$\mathrm{Cu} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	$2.896(7)$
$\mathrm{N} 1^{\mathrm{iii}}-\mathrm{Cu} 1-\mathrm{O} 3$	$95.2(2)$	$\mathrm{N} 4-\mathrm{Cu} 2-\mathrm{N} 5$	$92.1(3)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$84.8(2)$	$\mathrm{N} 4-\mathrm{Cu} 2-\mathrm{O} 2$	$89.1(2)$
$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{N} 3$	$169.2(2)$	$\mathrm{N} 4-\mathrm{Cu} 2-\mathrm{N} 3$	$91.5(3)$
$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{N} 5$	$91.4(3)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Cu} 1$	$128.6(5)$
$\mathrm{N} 2-\mathrm{Cu} 2-\mathrm{N} 3$	$95.0(3)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	$118.6(6)$
$\mathrm{N} 2-\mathrm{Cu} 2-\mathrm{N} 5$	$97.0(3)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{Cu} 1$	$112.7(5)$
$\mathrm{N} 2-\mathrm{Cu} 2-\mathrm{O} 2$	$82.7(2)$	$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 5$	$118.0(6)$
$\mathrm{N} 3-\mathrm{Cu} 2-\mathrm{N} 5$	$99.3(3)$	$\mathrm{C} 4-\mathrm{N} 2-\mathrm{Cu} 2$	$113.6(5)$
$\mathrm{N} 4-\mathrm{Cu} 2-\mathrm{N} 2$	$167.9(3)$	$\mathrm{C} 5-\mathrm{N} 2-\mathrm{Cu} 2$	$127.9(5)$
$\mathrm{N} 4-\mathrm{Cu} 2-\mathrm{N} 3$	$91.5(3)$		

Symmetry code: (i) $x+1, y, z$; (iii) $-x,-y,-z$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{O}^{\text {iii }}$	0.85	2.15	$2.985(8)$	168
${\text { C12-H12C } \cdots 1^{\text {iv }}}^{2}$	0.96	2.39	$3.320(11)$	163

Symmetry codes: (iii) $-x,-y,-z$; (iv) $-x,-y+1,-z$.

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.175$
$S=1.00$
2987 reflections
247 parameters

19 restraints
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.63 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.49 \mathrm{e}^{-3}$

The hydroxyl H atom was located in a difference Fourier map and treated as riding, with $\mathrm{O}-\mathrm{H}=0.85 \AA$ and $U_{\text {iso }}(\mathrm{H})=0.08 \AA^{2}$. The remaining H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ 0.96 (methyl) or $0.97 \AA$ (methylene), and refined in riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C). The CH_{3} groups were allowed to rotate freely. Atoms C6, C7, C8 and C9 of the $N-[3-$ (dimethylamino)propyl] group appeared to be disordered and were refined as two parts (occupancy factors $=0.55$ and 0.45).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (grant No. 30672515) and the PhD Program Foundation of the Ministry of Education of China (grant No. 20060423005).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV3136). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bencini, A., Benelli, C., Fabretti, A. C., Frachini, G. \& Gatteschi, D. (1986). Inorg. Chem. 25, 1063-1066.
Berg, K. E., Pellegrin, Y., Blondin, G., Ottenwaelder, X., Journaux, Y., Canovas, M. M., Mallah, T., Parsons, S. \& Aukauloo, A. (2002). Eur. J. Inorg. Chem. 2, 323-325.
Bruker (2002). SAINT (Version 6.02) and SMART (Version 5.62). Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, Z.-N., Liu, S.-X., Qiu, J., Wang, Z.-M., Huang, J.-L. \& Tang, W.-X. (1994). J. Chem. Soc. Dalton Trans. pp. 2989-2993.

Chen, Z.-N., Zhang, H.-X., Su, C.-Y., Zhou, Z.-Y., Zheng, K.-C. \& Kang, B.-S. (1998). Inorg. Chem. 37, 3877-3880.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Cronin, L., Mount, A. R., Parsons, S. \& Robertson, N. (1999). J. Chem. Soc. Dalton Trans. pp. 1925-1927.

Table 3
The 11 previously reported complexes bridged by asymmetrical N, N^{\prime}-disubstituted oxamides.

Complex	CSD refcode	Substituent 1 of the oxamide ligand	Substituent 2 of the oxamide ligand
$\left[\mathrm{MnCu}(\text { obzp })\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{n} \cdot n \mathrm{H}_{2} \mathrm{O}^{a}$	JASNOG	Benzoate	Propionate
$\left[\mathrm{MnCu}(\right.$ obze $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}^{\text {b }}$	KOCYUW	Benzoate	Ethanoate
$\left[\mathrm{CoCu}(\right.$ obze $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}^{c}$	PIWZOK	Benzoate	Ethanoate
$\left\{\left[\mathrm{Cu}_{2}(\text { oxbe })_{2}(\mathrm{DMF})\right] \mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{n} \cdot n \mathrm{DMF} \cdot n \mathrm{H}_{2} \mathrm{O}^{d}$	TUSWOT	Benzoate	2-Aminoethyl
$\left\{[\mathrm{Cu}(\text { oxbe })]_{2} \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right\} \cdot 2 \mathrm{DMF} \cdot$ DMA e	BAZDIQ	Benzoate	2-Aminoethyl
$\left\{[\mathrm{Ni} \text { (oxbe) }]_{2} \mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right\} \cdot 2.5 \mathrm{DMF}^{f}$	ULOQIV	Benzoate	2-Aminoethyl
$\left\{[\mathrm{Cu}(\text { oxbe })(\text { py })]_{2} \mathrm{Ni}(\mathrm{py})_{2}\right\} \cdot 2 \mathrm{DMF}^{g}$	ABOCAW	Benzoate	2-Aminoethyl
$\left\{[\mathrm{Ni}(\text { oxbe })]_{2} \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right\} \cdot 2.5 \mathrm{DMF}^{h}$	OBUCIY	Benzoate	2-Aminoethyl
$\left\{[\mathrm{Cu}(\mathrm{oxbp})]_{2} \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right\} \cdot 1.5 \mathrm{DMF} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}^{i}$	IYEWIS	Benzoate	3-Aminopropyl
$\left\{\mathrm{Na}_{2}[\mathrm{Cu}(\text { oxbp })]_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{n} \cdot n \mathrm{H}_{2} \mathrm{O}^{j}$	NAQWAE	Benzoate	3-Aminopropyl
[$\mathrm{Sn}_{2}($ oxhh $\left.)(\text { phenyl })_{4}\right]^{k}$	QEHNIB	2-Hydroxyphenyl	2-Hydroxy-1-methyl-2-phenylethyl

Notes: (a) Pei et al. (1989) (obzp is oxamido- N-benzoato- N^{\prime}-propionate); (b) Pei et al. (1991) (obze is oxamido- N-benzoato- N^{\prime}-ethanoate); (c) Larionova et al. (1997); (d) Zang et al. (2003) [oxbe is N-benzoato- N^{\prime}-(2-aminoethyl)oxamide; DMF is dimethylformamide]; (e) Tao, Zang, Hu et al. (2003) (DMA is dimethylamine); (f) Tao, Zang, Cheng et al. (2003); (g) Tao, Zang et al. (2004) (py is pyridine); (h) Tao, Mei et al. (2004); (i) Tao, Zang, Mei et al. (2003) [oxbp is N-benzoato- N^{\prime}-(3-aminopropyl)oxamide]; (j) Matović et al. (2005); (k) Jiménez-Pérez et al. (2006) [H_{4} oxhh is $(1 S, 2 R)-(-)-N$-(2-hydroxy-1-methyl-2-phenylethyl)- N^{\prime}-(2-hydroxyphenyl)oxamide].

metal-organic compounds

Delgado, F. S., Kerbellec, N., Ruiz-Peres, C., Cano, J., Lloret, F. \& Julve, M. (2006). Inorg. Chem. 45, 1012-1020.

Dominguez-Vera, J. M., Gulvez, N., Colacio, E., Cuesta, R., Costes, J. P. \& Laurent, J. P. (1996). J. Chem. Soc. Dalton Trans. pp. 861-865.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Jiménez-Pérez, V. M., Nöth, H., Ariza-Castolo, A., Flores-Parra, A. \& Contreras, R. (2006). J. Organomet. Chem. 691, 1584-1589.
Jubert, C., Mohamadou, A., Gërard, C., Brandes, S., Tabard, A. \& Barbier, J. P. (2002). J. Chem. Soc. Dalton Trans. pp. 2660-2669.

Larionova, J., Chavan, S. A., Yakhmi, J. V., Frøystein, A. G., Sletten, J., Sourisseau, C. \& Kahn, O. (1997). Inorg. Chem. 36, 6374-6381.
Matović, Z. D., Miletić, V. D., Samardžić, G., Pelosi, G., Ianelli, S. \& Trifunović, S. (2005). Inorg. Chim. Acta, 358, 3135-3144.

Nash, C. P. \& Schaefer, W. P. (1969). J. Am. Chem. Soc. 91, 1319-1324.
Pei, Y., Kahn, O., Nakatani, K., Codjovi, E., Mathonière, C. \& Slettent, J. (1991). J. Am. Chem. Soc. 113, 6558-6564.

Pei, Y., Nakatani, K., Kahn, O., Sletten, J. \& Renard, J. P. (1989). Inorg. Chem. 28, 3170-3175.
Real, J. A., Ruiz, R., Faus, J., Lloret, F., Julve, M., Journaux, Y., Philochelevisalles, M. \& Bois, C. (1994). J. Chem. Soc. Dalton Trans. pp. 37693773.

Sanz, J. L., Cervera, B., Ruiz, R., Bois, C., Faus, J., Lloret, F. \& Julve, M. (1996). J. Chem. Soc. Dalton Trans. pp. 1359-1366.

Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sun, W., Li, Y.-T., Wu, Z.-Y. \& Xiao, N.-Y. (2007). Acta Cryst. C63, m111m113.
Tao, R.-J., Mei, C.-Z., Zang, S.-Q. \& Niu, J.-Y. (2004). Chin. J. Struct. Chem. (Jiegoи Ниахие), 23, 936-939.
Tao, R.-J., Zang, S.-Q., Cheng, Y.-X., Wang, Q.-L., Hu, N.-H., Niu, J.-Y. \& Liao, D.-Z. (2003). Polyhedron, 22, 2911-2916.

Tao, R.-J., Zang, S.-Q., Hu, N.-H., Wang, Q.-L., Cheng, Y.-X., Niu, J.-Y. \& Liao, D.-Z. (2003). Inorg. Chim. Acta, 353, 325-331.

Tao, R.-J., Zang, S.-Q., Mei, C.-Z., Wang, Q.-L., Lou, B.-Y., Niu, J.-Y., Cheng, Y.-X. \& Liao, D.-Z. (2003). J. Cluster Sci. 14, 459-469.

Tao, R.-J., Zang, S.-Q., Wang, Q.-L., Cheng, Y.-X., Niu, J.-Y. \& Liao, D.-Z. (2004). J. Coord. Chem. 57, 947-953.

Zang, S.-Q., Tao, R.-J., Wang, Q.-L., Hu, N.-H., Cheng, Y.-X., Niu, J.-Y. \& Liao, D.-Z. (2003). Inorg. Chem. 42, 761-766.

[^0]: ${ }^{\text {a Marine Drug and Food Institute, Ocean University of China, } 266003 \text { Qingdao, }}$ People's Republic of China, ${ }^{\mathbf{b}}$ School of Marine Life Sciences, Ocean University of China, 266003 Qingdao, People's Republic of China, and ${ }^{\text {c }}$ Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, 266003 Qingdao, People's Republic of China
 Correspondence e-mail: yantuanli@ouc.edu.cn

